Face alignment with cascaded semi-parametric deep greedy neural forests

نویسندگان

  • Arnaud Dapogny
  • Kevin Bailly
چکیده

Face alignment is an active topic in computer vision, consisting in aligning a shape model on the face. To this end, most modern approaches refine the shape in a cascaded manner, starting from an initial guess. Those shape updates can either be applied in the feature point space (i.e. explicit updates) or in a low-dimensional, parametric space. In this paper, we propose a semi-parametric cascade that first aligns a parametric shape, then captures more finegrained deformations of an explicit shape. For the purpose of learning shape updates at each cascade stage, we introduce a deep greedy neural forest (GNF) model, which is an improved version of deep neural forest (NF). GNF appears as an ideal regressor for face alignment, as it combines differentiability, high expressivity and fast evaluation runtime. The proposed framework is very fast and achieves high accuracies on multiple challenging benchmarks, including small, medium and large pose experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple deep convolutional neural networks averaging for face alignment

Face alignment is critical for face recognition, and the deep learning-based method shows promise for solving such issues, given that competitive results are achieved on benchmarks with additional benefits, such as dispensing with handcrafted features and initial shape. However, most existing deep learning-based approaches are complicated and quite time-consuming during training. We propose a c...

متن کامل

Cascade of forests for face alignment

In this paper we propose a regression forests-based cascaded method for face alignment. We build on the Cascaded Pose Regression (CPR) framework and propose to use Regression Forest as a primitive regressor. The regression forests are easier to train and naturally handle the over-fitting problem via averaging the outputs of the trees at each stage. We address the fact that the CPR approaches ar...

متن کامل

Multi-path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained "Hard Faces"

Large-scale variations still pose a challenge in unconstrained face detection. To the best of our knowledge, no current face detection algorithm can detect a face as large as 800 × 800 pixels while simultaneously detecting another one as small as 8 × 8 pixels within a single image with equally high accuracy. We propose a two-stage cascaded face detection framework, Multi-Path Region-based Convo...

متن کامل

GoDP: Globally Optimized Dual Pathway deep network architecture for facial landmark localization in-the-wild

Facial landmark localization is a fundamental module for pose-invariant face recognition. The most common approach for facial landmark detection is cascaded regression, which is composed of two steps: feature extraction and facial shape regression. Recent methods employ deep convolutional networks to extract robust features for each step, while the whole system could be regarded as a deep casca...

متن کامل

Face Alignment Assisted by Head Pose Estimation

In this paper we propose supervised initialisation scheme for cascaded face alignment based on explicit head pose estimation. We first investigate the failure cases of most state of the art face alignment approaches and observe that these failures often share one common global property, i.e. the head pose variation is usually large. Inspired by this, we propose a deep convolutional network mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2018